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Undetected Genotyping Errors Cause Apparent Overtransmission of
Common Alleles in the Transmission/Disequilibrium Test
Adele A. Mitchell, David J. Cutler, and Aravinda Chakravarti
McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore

The transmission/disequilibrium test (TDT), a family-based test of linkage and association, is a popular and intuitive
statistical test for studies of complex inheritance, as it is nonparametric and robust to population stratification. We
carried out a literature search and located 79 significant TDT-derived associations between a microsatellite marker
allele and a disease. Among these, there were 31 (39%) in which the most common allele was found to exhibit
distorted transmission to affected offspring, implying that the allele may be associated with either susceptibility to
or protection from a disease. In 27 of these 31 studies (87%), the most common allele appeared to be overtransmitted
to affected offspring (a risk factor), and, in the remaining 4 studies, the most common allele appeared to be
undertransmitted (a protective factor). In a second literature search, we identified 92 case-control studies in which
a microsatellite marker allele was found to have significantly different frequencies in case and control groups. Of
these, there were 37 instances (40%) in which the most common allele was involved. In 12 of these 37 studies
(32%), the most common allele was enriched in cases relative to controls (a risk factor), and, in the remaining 25
studies, the most common allele was enriched in controls (a protective factor). Thus, the most common allele
appears to be a risk factor when identified through the TDT, and it appears to be protective when identified through
case-control analysis. To understand this phenomenon, we incorporated an error model into the calculation of the
TDT statistic. We show that undetected genotyping error can cause apparent transmission distortion at markers
with alleles of unequal frequency. We demonstrate that this distortion is in the direction of overtransmission for
common alleles. Therefore, we conclude that undetected genotyping errors may be contributing to an inflated false-
positive rate among reported TDT-derived associations and that genotyping fidelity must be increased.

Introduction

Much attention has recently been paid to methods for
predicting genotyping error rates, studying types of er-
rors that can be expected with various technologies, de-
tecting the presence of such errors, predicting the effect
of undetected errors on genetic analysis, and developing
analytical methods that are robust to such errors. In-
consistencies in genotype data can occur for many rea-
sons, including sample mix-up, pedigree errors such as
nonpaternity or incorrectly specified relationships, tech-
nician error, and technology failure. In the context of a
genome scan or in the analysis of many unlinked can-
didate genes or of haplotypes, misspecified relationships
can usually be detected. In this analysis, we focus only
on random errors that have occurred because of imper-
fect genotyping technologies and manual mistakes that
result in an incorrect genotype call at a single marker.
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Different types of errors are encountered with differ-
ent types of markers. For example, with single-nucle-
otide polymorphisms (SNPs), heterozygotes are believed
to be more difficult to call than homozygotes, leading
to allelic dropout (Cutler et al. 2001). This is because
SNP genotyping technology often involves carrying out
two reactions per locus. If an individual is heterozygous
and one of the two reactions fails, the individual will
appear homozygous. Microsatellite genotypes, on the
other hand, are prone to both call errors and missed
alleles (Ewen et al. 2000; Sobel et al. 2002). Call errors
can result from errors in sample loading, low fluores-
cence, bleedthrough fluorescence from other markers
run in the same lane, or inconsistencies in genotype
scoring, particularly when alleles are called by eye. In
addition, errors can be introduced by repeat expansion
during PCR (Clarke et al. 2001), particularly for di-
nucleotide repeats.

A fraction of genotyping errors can be detected by
checking for the presence of deviations from Mendelian
inheritance in families. Rates of genotyping error de-
tection through Mendelian inheritance vary with ped-
igree structure, the number of alleles at a marker, and
the frequencies of the alleles; errors can be detected
more easily in highly polymorphic microsatellite mark-
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ers than in SNPs (Douglas et al. 2002). Through sim-
ulation, true error rates in SNPs have been shown to
be approximately three to four times the Mendelian-
detectable error rate (Gordon et al. 1999). Additional
errors can be detected by investigating apparent double
recombinants within small regions when multipoint
data are available and haplotypes can be constructed.
However, extended pedigrees are often not available,
making haplotype construction difficult and reducing
the chances of detecting an error through Mendelian
analysis, as well. Even with highly polymorphic micro-
satellite loci, many errors will be undetectable—
particularly errors in parental genotypes in trios and
errors in any family member when data are only avail-
able from one parent (Douglas et al. 2002). As trends
in the study of complex diseases are shifting away from
the collection of large family pedigrees and toward the
study of smaller family units such as sibling pairs or
even toward unrelated individuals (Risch and Merikan-
gas 1996), Mendelian checking is becoming less useful.
Consequently, in such analyses, more undetected errors
remain in the data. One way of handling such invisible
errors is to treat each genotype as uncertain, making
use of multipoint sibling pair data to compute the pos-
terior probability of a genotyping error at each marker
for each sib pair (Douglas et al. 2000). Another method
involves the construction of all possible haplotypes and
computation of the posterior probability for each ped-
igree, depending on user-specified allele frequencies,
map distances, and penetrances (Sobel et al. 2002). This
method is more powerful than the traditional selection
of a single, best-fitting haplotype in the identification of
potential double recombinants. Finally, an error model
can be directly incorporated into a likelihood-based
LOD score calculation (Lincoln and Lander 1992) or
linkage disequilibrium (LD) analysis (Gordon et al.
2001).

Even if undetected errors are random, their effects are
often nonrandom. In parametric linkage analysis, the
presence of undetected genotyping errors inflates the
apparent recombination fraction, resulting in increased
apparent map distance (Buetow 1991; Shields et al.
1991), incorrect marker ordering, loss of power, and
increased false-negative rate. Multipoint linkage anal-
ysis is affected by undetected errors to a greater degree
than two-point linkage analysis. A significant two-point
LOD score that becomes nonsignificant under multi-
point linkage is often treated as a two-point false-pos-
itive result, when it may in fact be a multipoint false
negative (Goring and Terwilliger 2000).

Less has been written about the effects of undetected
genotyping error on association and LD analyses than
about its effects on linkage analysis. In traditional case-
control analysis, a loss of power can result from the
presence of undetected genotyping errors (Gordon and

Ott 2001). Apparent background LD rates are also af-
fected by such errors. The direction and magnitude of
the effect depends on allele frequencies, true haplotype
frequencies, the measure of LD employed, and the ge-
notyping error rate. Error rates in the range of 3% can
have substantial effects on two-point measures of back-
ground LD between SNPs (Akey et al. 2001). Most
relevant to the current study, some recent attention has
been focused on inflated transmission/disequilibrium
test (TDT) false-positive rates resulting from undetected
genotyping errors (Gordon et al. 2001; Heath 1998).

The TDT is a family-based test for linkage in the
presence of LD (Spielman et al. 1993). Its appeal lies
in its simplicity and its robustness to population strat-
ification (Ewens and Spielman 1995). In its most simple
form, the TDT is carried out by counting the number
of times a particular allele is transmitted and the number
of times it is not transmitted from heterozygous parents
to affected children. The null hypothesis is that there is
no association between the allele and the disease under
study, in which case transmission and non-transmission
should be equally likely. Significant deviation from
Mendelian transmission is assessed via the McNemar
x2 test statistic:

2(t � u) 2T p ∼ x ,1t � u

where t and u are the transmitted and untransmitted
counts, respectively, for the allele under investigation.
We have determined that the presence of undetected
genotyping errors can lead to substantial inflation of the
false-positive rate of this basic TDT and that the bias
leads to a particular phenomenon, namely the apparent
overtransmission of common alleles.

How could undetected genotyping error lead to in-
flation of the TDT statistic? If the true genotypes of a
father, mother, and child in a trio are A1A1, A1A2, and
A1A1, respectively, the father will not be included in the
TDT calculation, as he is homozygous for allele A1.
However, if his genotype is miscalled as A1A2, the error
is Mendelian consistent and he will be included in the
analysis, inflating the transmitted count for allele A1 and
the untransmitted count for allele A2. If all families are
trios, as is common in studies using the TDT, a ho-
mozygous parent miscalled as a heterozygote will never
be detected through Mendelian checking. Genotype er-
rors in children are easier to detect than errors in parents
(Douglas et al. 2002), but complete detection is by no
means possible.

We believe that genotyping error rates are high
enough to substantially affect the TDT. Although the
overall error rate for a particular data set may be low,
the errors may not be distributed evenly across all mark-
ers. Because the TDT is performed for each marker in-
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dividually, the mean error rate across all markers is not
the critical statistic. Rather, the variance in error rates
between markers must be considered. For example, a
global error rate of 1% across 10 markers could be the
result of a 1% error rate at each marker or nine markers
could be error-free and one marker could have a 10%
error rate. We explore this issue and present evidence
that, in practice, the latter scenario is more likely. We
assert that in any set of markers typed it is possible that
there exists a subset of markers with genotyping error
rates high enough to produce false-positive TDT results.

Undetected genotyping errors have been shown, via
simulation, to lead to inflated TDT false-positive rates
for biallelic markers (Gordon et al. 2001). Here, we
present a mathematical model for quantifying the effect
of the presence of undetected genotyping errors on the
false-positive rate of the TDT. The model can be applied
to biallelic loci, as well as to highly polymorphic mi-
crosatellites and it allows for the specification of a va-
riety of error models, as described by Sobel et al. (2002).
Consistent with the simulations of Gordon et al. (2001),
our model predicts several characteristics of the effects
of the errors. (1) In the presence of undetected geno-
typing errors, alleles of unequal frequency appear to be
transmitted in a distorted manner—that is, there is an
apparent deviation from Mendelian transmission that
is not due to linkage to a disease-causing allele. (2) The
apparent bias in transmission is in a specific direction:
common alleles appear to be overtransmitted to affected
children, which seems to increase susceptibility to the
disease, and rare or midfrequency alleles appear to be
undertransmitted, which seems to be protective. (3) In-
creasing the number of trios included in the analysis
linearly increases the magnitude of the apparent dis-
tortion. (4) Only a fraction of genotyping errors are
detectable by Mendelian checking, with only 25%–33%
detectable in SNPs and 40%–60% detectable in highly
polymorphic microsatellites. These characteristics sug-
gest that many reported TDT-derived associations be-
tween diseases and marker alleles may be false positives.

Methods

In this section, we present three of many possible ge-
notyping error models and develop a method for esti-
mating the size and direction of the effects of undetected
errors on the TDT. This is done by calculating expected
transmitted and untransmitted counts of each allele at
a given locus from heterozygous parents to affected off-
spring in the presence of undetected errors. Expected
transmitted and untransmitted counts are obtained
through several simple manipulations of four matrices.
Two of these four matrices delineate the genotyping er-
ror model by specifying the conditional probability of
observing a particular genotype, given a particular true

genotype. This is done for both parents and children. It
is in these two matrices that our method provides the
flexibility to explore any desired error model. The third
matrix specifies the relationship between true parental
genotypes and true child genotypes—that is, Mendelian
inheritance. The fourth matrix gives the expected fre-
quency of each possible combination of parental geno-
types under the assumption of Hardy-Weinberg equilib-
rium. The four matrices and the error models are
described in greater detail below.

Error Models

In our analyses, we maintain distinct allele order
within genotypes—that is, genotype A1A2 ( genotype
A2A1. This simplifies computer generation of matrices,
particularly in the multiallelic case, as permutations of
genotypes do not need to be considered within a single
matrix element.

We consider three simple genotyping error models.
The first is a random error model (Gordon et al. 2001;
Sobel et al. 2002), under which each allele has an equal
probability, e, of being miscalled and the call is equally
likely to be any of the other alleles. The second model
is a proportional error model (Douglas et al. 2002; Sobel
et al. 2002), under which each allele has an equal prob-
ability, e, of being miscalled and the call is made in
proportion to the frequencies of the other alleles at that
marker—that is, allele i is miscalled with probability e
and, given that allele i has been miscalled, it will be called
as allele j with probability pj/(1�pi). The third model is
an allelic dropout model, in which the only source of
error is miscalling a heterozygote as either homozygote.

Matrix Descriptions

M, the “true-parent/true-child” or Mendelian inher-
itance matrix, is of size s4 # s2, where s is the number
of alleles at the marker under observation. The rows in
M represent all possible parental genotypes (AiAj #
AkAl; ) and the columns in M represent all1 � i,j,k,l � s
possible child genotypes (AmAn; , ). Element1 � m n � s
Mxy contains the conditional probability that a child pro-
duced by parents with true mating type in row x has
the true genotype specified in column y. For example,
row A1A2 # A2A2 contains elements 0, 1/2, 0, 1/2, cor-
responding to the probability of parents A1A2 and A2A2

having a child with genotype A1A1, A1A2, A2A1 or A2A2,
respectively.

C, the “true-child/observed-child” genotype matrix, is
of size s2 # s2. The rows of the matrix represent all
possible true child genotypes and the columns represent
all possible observed child genotypes. Element Cxy gives
the conditional probability of observing a child’s ge-
notype as that of column y, given that the child’s true
genotype is that of row x. Under the random error
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model, elements of C will be of the form ,N 2–Ne (1 � e)
where N is the number of alleles that have been
miscalled.

P, the “true-parent/observed-parent” matrix, is of size
s4 # s4. The rows in P represent all possible true parental
genotypes, and the columns in P represent all possible
observed parental genotypes. Each element in the ma-
trix, Pxy, is the conditional probability of observing the
parental genotypes in column y, given the true parental
genotypes in row x. Under the random error model,
elements of P will be of the form . For ex-N 4�Ne (1 � e)
ample, the element of P that corresponds to row A1A1

# A1A2 and column A1A1 # A2A2 would be ,3e(1 � e)
as three alleles have been called correctly and one has
been miscalled. The error parameters in P and C can be
tailored to describe any desired error model. This allows
the specification of a model that is specific to the ge-
notyping technology employed and the type of marker
utilized (Sobel et al. 2002).

Let H, the Hardy-Weinberg proportion matrix, be a
diagonal s4 # s4 matrix. Each element, Hxy, where

, is the expected population frequency of the truex p y
parental genotypes represented by row x, under Hardy-
Weinberg equilibrium. For example, with a biallelic
marker, the nonzero element in row A1A1 # A1A2 would
be , where p is the frequency of the A1 allele.3p (1 � p)
Because genotypes A1A2 and A2A1 are considered as sep-
arate entities, permutations do not need to be included
within a single matrix element. Thus, the frequency of
A1A2 in this example is , rather than .p(1 � p) 2p(1 � p)
Note that deviations from Hardy-Weinberg due to in-
breeding or other causes can be incorporated into H.

Calculations

Taking the product of P, the true-parent/observed-par-
ent genotype matrix, with H, the Hardy-Weinberg pro-
portion matrix, produces an s4 # s4 matrix, F, contain-
ing elements giving the frequency of each possible
true-parent/observed-parent genotype pair under the as-
sumption of Hardy-Weinberg equilibrium:

P # H p F (1)

Transposing F and taking the product with M, the Men-
delian inheritance matrix relating true parent and true
child genotypes, yields an s4 # s2 matrix, T, containing
the expected frequency of each possible observed-parent/
true-child genotype triple:

TF # M p T (2)

Taking the product of T, the observed-parent/true-child
genotype matrix, with C, the true-child/observed-child
genotype matrix, yields D, an s4 # s2 matrix containing
the expected frequencies of all possible observed-parent/

observed-child triples. In other words, D contains the
data that would be expected experimentally under the
error model specified in P and C, with population allele
frequencies specified in H:

T # C p D (3)

Matrix D has the same layout as M, except that the
rows in D represent observed parental genotype pairs
and columns represent observed child genotypes, rather
than true parent and true child genotypes, as found in
M. Since D contains the expected frequencies of all pos-
sible observed parent-child trio genotypes, it can be used
to compute a predicted bias in the TDT statistic under
any genotyping error model and to estimate the fraction
of all genotyping errors that would be detectable by
checking for Mendelian inconsistencies in trios. The cells
containing zeros in M contain the frequencies of Men-
delian detectable errors in D, as they represent parent-
child genotype trios that are inconsistent with the rules
of Mendelian inheritance. The sum of these elements in
D is the expected frequency of Mendelian-detectable ge-
notyping errors, E.

To determine the expected fraction of errors that
would be detectable through Mendelian checking, the
total expected frequency of trios with genotyping errors
can be calculated and compared to E, the expected fre-
quency of Mendelian-detectable errors. Under the ran-
dom error model, the probability that a trio contains no
genotyping errors is (1�e)6. The probability that a trio
contains at least one error is then 1�(1�e)6. Thus, the
expected fraction of errors that could be detected
through Mendelian checking is:

E
. (4)61 � (1 � e)

The TDT Statistic

Since each element in D gives the probability of ob-
serving a particular parent-child genotype combination,
D can be multiplied by n, the total number of trios in
the data set, to give expected counts for each type of
trio. It is then possible to determine the number of trios
that would contribute to the TDT statistic and their
relative contributions. All Mendelian-inconsistent ge-
notypes typically are removed from a data set prior to
any analysis. Under this protocol, the trios represented
in the calculation of E (trios with Mendelian errors)
would be removed and only the remaining Mendelian-
consistent trios would be considered in the calculation
of the TDT statistic. Depending upon the genotype of
the child, trios with one parent heterozygous for allele
A1 would each contribute one count to the transmitted
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or untransmitted tally of A1, while trios with two parents
heterozygous for A1 would contribute either two trans-
mitted counts, two untransmitted counts or one of each.
Using these expected transmitted and untransmitted
counts for A1, it is possible to compute the expected bias
in the TDT statistic under the error model employed and
subsequently to calculate the false-positive rate under
the specified model.

Let h be the number of observed heterozygous A1A2

parents included in the computation of the TDT statistic
and let t and u be the observed transmitted and untrans-
mitted counts, respectively, of the A1 allele from these
heterozygous parents to affected children, such that

. Under the null hypothesis (H0), there is as-t � u p h
sumed to be no linkage, no LD, no genotyping error,
and, consequently, no bias in transmission. Thus, under
H0, the probability of transmission of the A1 allele, ,p0

is equal to 0.5. If t ∼ Binomial( ), its expected valueh,p0

is , with variance . Then,hp p h/2 hp (1 � p ) p h/40 0 0

2 2(t � hp ) (t � u)0 2T p p ∼ x ,1hp (1 � p ) t � u0 0

the familiar McNemar x2 test statistic employed in the
TDT.

Under the alternative hypothesis (HA), the assump-
tions of no linkage and no LD still hold, but genotyping
error is allowed. The probability of transmission of the
A1 allele under HA is

p p p � � ,A 0

where � is the deviation of from 0.5, or the biasp0

in transmission of allele A1. This leads to t ∼
Binomial( ), with expected valueh,p E {t} p hp pA A

and varianceh(1/2 � �) Var {t} p hp (1 � p ) pA A

.h(1/2 � �)(1 � 1/2 � �)
To obtain the distribution of the TDT statistic under

the alternative hypothesis, consider the transformation

t � h/2
Z p .�h/4

Under HA,

{ }E t �h/2
{ }E Z p �h/4

h/2 � h� � h/2 �p p 2� h�h/4

and

{ }Var t
{ }Var Z p 2�[ ]h/4

2h(1/4 � � )
p r 1, as � r 0 .

h/4

So, , when � is small. Therefore, 2�Z ∼ N(2� h,1) Z ∼
with noncentrality parameter2Noncentral x l p1

. The McNemar x2 test statistic, derived2 2[E{Z}] p 4� h
above, is equivalent to , as shown below:2Z

2
2 2(t � u) (2t � h) 2t � h

T p p p [ ]�t � u h h
2t � h/2 2p p Z .[ ]�h/4

Therefore, under HA, the TDT statistic follows a non-
central distribution with noncentrality parameter l p2x1

4�2h.
Note that if the observed � is assumed to equal its

expected value, , l can be expressed in a moret 1�t�u 2

intuitive manner. Substituting t � u for h and t 1�t�u 2

for � in yields2l p 4� h

2t 1
( )l p 4 � t � u[ ]t � u 2

2 22t � (t � u) (t � u)
( )p t � u p ,[ ]t � u t � u

which is the TDT test statistic using observed values of
t and u. When , and when , l repre-t p u l p 0 t ( u
sents the magnitude of the bias introduced into the TDT
statistic by the presence of undetected genotyping errors.

We used D to determine expected transmitted and un-
transmitted counts for varying allele frequencies, num-
ber of alleles, sample sizes and error rates. Using these
expected counts as t and u, we calculated l, the non-
centrality parameter, and then used a noncentral x2

1 dis-
tribution to compute the false-positive rates of the TDT
statistic under the same parameters. This is analogous
to the most common application of the noncentral x2

distribution, as we have used it to compute the power
to detect a shift from (under H0) to a nonzero ll p 0
(under HA). For multiallelic markers, each allele was
taken individually against all other alleles grouped
together.

Literature Searches

Using PubMed searches for “TDT � association,”
“TDT � susceptibility,” “transmission/disequilibrium,”
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Table 1

Expected Transmitted and Untransmitted
Counts for Major Allele at a Biallelic
Marker and Expected TDT False-Positive
Rate for P ! .05

e, n, and p t u l a

.005:
100:

.60 48.0 47.6 .00 .05

.75 38.1 37.1 .01 .05

.85 26.5 25.1 .04 .05

.90 19.3 17.8 .07 .06

.95 11.1 9.4 .15 .07

.99 3.9 2.0 .63 .12
200:

.60 96.0 95.2 .00 .05

.75 76.1 74.1 .03 .05

.85 53.0 50.2 .07 .06

.90 38.7 35.5 .13 .07

.95 22.3 18.7 .30 .09

.99 7.8 3.9 1.26 .20
500:

.60 240.0 238.0 .01 .05

.75 190.3 185.4 .06 .06

.85 132.5 125.5 .15 .07

.90 96.6 88.8 .33 .09

.95 55.7 46.9 .76 .14

.99 19.4 9.8 3.16 .43
.01:

100:
.60 48.0 47.2 .01 .05
.75 38.6 36.7 .05 .06
.85 27.6 24.9 .14 .07
.90 20.6 17.5 .24 .08
.95 12.7 9.3 .54 .11
.99 5.7 2.0 1.84 .27

200:
.60 96.0 94.4 .01 .05
.75 77.2 73.3 .10 .06
.85 55.2 49.8 .27 .08
.90 41.2 35.1 .50 .11
.95 25.4 18.5 1.09 .18
.99 11.5 3.9 3.69 .48

500:
.60 239.9 236.1 .03 .05
.75 192.9 183.3 .25 .08
.85 138.0 124.5 1.10 .18
.90 103.1 87.7 1.24 .20
.95 63.6 46.3 2.72 .38
.99 28.6 9.8 9.22 .86

.02:
100:

.60 48.0 46.5 .02 .05

.75 39.6 35.9 .18 .07

.85 29.5 24.3 .50 .11

.90 23.1 17.2 .87 .15

.95 15.7 9.1 1.77 .27

.99 9.2 2.0 4.64 .58

(continued)

Table 1 (continued)

e, n, and p t u l a

200:
.60 95.9 93.0 .05 .06
.75 79.1 71.76 .36 .09
.85 59.0 28.6 .99 .17
.90 46.1 34.3 1.73 .26
.95 31.5 18.2 3.55 .47
.99 18.5 4.0 9.28 .86

500:
.60 239.8 232.4 .12 .06
.75 197.9 179.4 .90 .16
.85 147.5 121.5 2.48 .35
.90 115.3 85.8 4.33 .55
.95 78.7 45.5 8.87 .85
.99 46.2 10.1 23.20 .99

.05:
100:

.60 47.7 44.4 .12 .06

.75 42.1 33.9 .87 .15

.85 34.4 23.0 2.26 .32

.90 29.5 16.4 3.70 .49

.95 23.7 9.0 6.56 .73

.99 18.6 2.6 12.05 .93
200:

.60 95.4 88.9 .23 .08

.75 84.1 67.8 1.75 .26

.85 68.8 46.0 4.52 .57

.90 58.9 32.8 7.40 .78

.95 47.4 18.1 13.12 .95

.99 37.1 5.2 24.09 .99
500:

.60 238.6 222.3 .58 .12

.75 210.3 169.5 4.37 .55

.85 172.0 115.0 11.30 .92

.90 147.3 82.1 18.50 .99

.95 118.5 45.2 32.80 .99

.99 92.8 13.0 60.23 .99

and “transmission disequilibrium,” we compiled a list
of studies that used the basic TDT to demonstrate sig-
nificant ( ) association between a marker alleleP ! .05
and a disease. Studies that considered haplotypes rather
than single markers and studies that applied a global
TDT (i.e., those that considered all alleles simulta-
neously, rather than each allele individually against all
others as a group) were excluded. The collection was
then narrowed to include only studies available online
or in the Johns Hopkins University School of Medicine
library. Finally, only those that provided allele frequen-
cies for the marker in question or those for which marker
allele frequencies could be located for an ethnically
matched control population were analyzed. Given allele
frequencies in both the study and a control population,
the control population frequencies were chosen. Case-
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Table 2

Expected TDT False-Positive Rates for at an Eight-AlleleP ! .05
Locus, Testing One Allele Against All Others as a Group

e
AND

n

VALUE FOR

Highest
Frequency

Allele
Midfrequency

Allele

Lowest
Frequency

Alleles

p1
a ar

b ap
c p2

a ar
b ap

c p3
a ar

b ap
c

.01:
200 .30 .05 .05 .25 .05 .05 .075 .05 .05

.40 .05 .05 .30 .05 .05 .050 .05 .05

.60 .06 .05 .30 .05 .05 .017 .06 .05

.80 .08 .07 .14 .05 .06 .010 .06 .05
500 .30 .05 .05 .25 .05 .05 .075 .05 .05

.40 .05 .05 .30 .05 .05 .050 .05 .05

.60 .07 .06 .30 .05 .05 .017 .07 .05

.80 .12 .11 .14 .05 .08 .010 .08 .05
.02:

200 .30 .05 .05 .25 .05 .05 .075 .05 .05
.40 .06 .05 .30 .05 .05 .050 .05 .05
.60 .08 .06 .30 .05 .06 .017 .07 .05
.80 .15 .14 .14 .05 .10 .010 .09 .05

500 .30 .06 .05 .25 .05 .05 .075 .05 .05
.40 .07 .06 .30 .06 .05 .050 .06 .05
.60 .12 .08 .30 .06 .06 .017 .09 .05
.80 .31 .27 .14 .05 .18 .010 .14 .06

.04:
200 .30 .06 .05 .25 .06 .05 .075 .05 .05

.40 .08 .06 .30 .06 .05 .050 .06 .05

.60 .15 .10 .30 .06 .07 .017 .11 .05

.80 .41 .35 .14 .05 .23 .010 .17 .06
500 .30 .08 .06 .25 .06 .05 .075 .06 .05

.40 .12 .07 .30 .08 .05 .050 .07 .05

.60 .31 .17 .30 .07 .10 .017 .20 .06

.80 .78 .71 .14 .05 .48 .010 .34 .09
.06:

200 .30 .07 .06 .25 .06 .05 .075 .06 .05
.40 .11 .07 .30 .07 .05 .050 .07 .05
.60 .26 .15 .30 .07 .09 .017 .16 .06
.80 .68 .59 .14 .05 .39 .010 .26 .08

500 .30 .11 .07 .25 .08 .05 .075 .06 .05
.40 .20 .10 .30 .11 .05 .050 .10 .06
.60 .56 .30 .30 .09 .14 .017 .33 .07
.80 .97 .93 .14 .05 .75 .010 .55 .13

a Frequencies are given for the most common allele, a midfrequency
allele, and the six remaining, equally frequent alleles.

b ar p expected false-positive rate under the random error model.
c ap p expected false-positive rate under the proportional error

model.

Table 3

Expected Fraction of Mendelian-Detectable Errors at
an Eight-Allele Marker with One High-Frequency
Allele, One Midfrequency Allele, and Six Equally
Frequent Rare Alleles under the Random Error Model

e

FRACTION

OF TRIOS

WITH �1
ERROR

FREQUENCY OF

ALLELE(S)
FRACTION

OF ERRORS

DETECTABLE1 2 3–8

.02 .11 .30 .25 .075 .56
.40 .30 .050 .53
.60 .30 .017 .47
.80 .14 .010 .43

.04 .22 .30 .25 .075 .57
.40 .30 .050 .54
.60 .30 .017 .49
.80 .14 .010 .44

.06 .31 .30 .25 .075 .58
.40 .30 .050 .56
.60 .30 .017 .50
.80 .14 .010 .46

control studies were compiled by searching PubMed for
“association � case � control � genetic” and “micro-
satellite � case � control.” Only analyses of microsat-
ellite or SNP marker alleles were compiled. Articles not
available online were excluded. A complete list of all
TDT and case-control studies can be found in appendix
A (online only).

Estimated genotyping error rates for collected TDT
studies were obtained by using the sample size and sig-

nificance level to compute the lowest value of l that
would be required to render the reported TDT statistic
nonsignificant. Our random error model was then used
to determine the magnitude of genotyping error that
would generate the calculated l value for the number
of trios included in the analysis.

Results

Impact of Allele Frequency on Transmission Distortion

Table 1 shows l, the magnitude of the expected bias
in the TDT statistic, and a, the expected false-positive
rate under the random error model for varying geno-
typing error rates, numbers of trios and allele frequencies
for a biallelic marker. Results are identical for the pro-
portional error model. Table 2 gives a for an eight-allele
marker, with one common allele, one midfrequency al-
lele, and six equally frequent rare alleles under the ran-
dom error model and the proportional error model. For
both types of markers and both error models, we found
an increasing false-positive rate with increasing geno-
typing error rate, sample size, and difference in fre-
quency between alleles at the marker. In all cases, the
most common allele appears to be overtransmitted. Un-
der the random error model, the rarest alleles at a mul-
tiallelic marker appear to be undertransmitted, whereas
alleles of midfrequency are unaffected. Under the pro-
portional error model, midfrequency alleles sometimes
appear to be undertransmitted, and rare alleles are al-
most always unaffected.

Under the allelic dropout model, common alleles ap-
pear to be overtransmitted and rare alleles appear to be
undertransmitted, but error rates must be approximate
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Figure 1 Distribution of frequencies of overtransmitted microsatellite alleles among controls in TDT studies from the literature (striped
bars) and of all microsatellite alleles in the Marshfield Clinic Human Diversity Panel (solid bars). The difference between the distributions is
highly significant ( , Kolmogorov-Smirnov Test).�11P ! 1.0 # 10

ly twice as high as with the random error model to see
the same magnitude of apparent distortion (data not
shown).

Table 3 gives the total number of expected errors and
the expected rate of error detection in trios for varying
allele frequencies and error rates under the random error
model for multiallelic markers. The detectable error rate
ranged from 25% to 33% for SNPs (data not shown),
and from 40% to 60% for multiallelic markers, with
increasing rates of detection with increasing major allele
frequency and decreasing error rates.

TDT in the Literature

PubMed searches yielded 189 studies that used the
TDT to demonstrate significant LD between a single
marker allele and a disease. Significance was assessed at
the 0.05 level, without adjustment for multiple testing.
Of these 189 studies, 23 used a likelihood-based or
global TDT, 24 did not provide allele frequencies, 6 an-
alyzed a quantitative trait, 32 were not available online

or in the Johns Hopkins University medical library, and
5 were not in English. In the remaining 99 studies, 79
microsatellite, 18 variable number of tandem repeats
(VNTR), 8 human leukocyte antigen (HLA), and 29 SNP
alleles and 4 microdeletions were found to exhibit sig-
nificantly biased transmission to affected offspring. Ta-
ble A (online only) provides allele frequencies, trans-
mitted and untransmitted counts, and TDT scores for
the SNPs and multiallelic markers in the 99 studies.

Figure 1 shows a histogram of frequencies of over-
transmitted microsatellite alleles in controls from TDT
studies in the literature, as compared to frequencies of
all microsatellite alleles in the Marshfield Clinic Hu-
man Diversity Panel. The difference between the distri-
butions is highly significant ( , Kolmo-�11P ! 1.0 # 10
gorov-Smirnov Test).

TDT versus Case-Control

Of the 79 identified transmission distortions of mi-
crosatellite alleles, 31 involved the most common allele
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Table 4

TDT versus Case-Control Studies in the
Literature

ALLELE TYPE

AND

CATEGORY

NO. (%) OF ALLELES IN

STUDY TYPE

TDT Case-Control

Microsatellite:a

Protective 4 (12.9) 25 (67.6)
Risk 27 (87.1) 12 (32.4)

SNP:b

Protective 12 (41.4) 125 (68.7)
Risk 17 (58.6) 57 (31.3)

Combined:c

Protective 16 (32.0) 150 (68.5)
Risk 34 (68.0) 69 (31.5)

NOTE.—Given significant association (P !

) between the most common allele and dis-.05
ease status, results are broken down into pro-
tective (TDT: common allele undertransmit-
ted; case-control: common allele enriched in
controls) or risk (TDT: common allele over-
transmitted; case control: common allele en-
riched in cases) categories. P values were
computed using Fisher’s exact test.

a .�6P p 6.0 # 10
b .�3P p 6.1 # 10
c .�6P p 3.6 # 10

at the locus. Of these 31 transmission distortions of the
most common allele, 27 (87%) found it to be overtrans-
mitted to affected offspring, implying that the most com-
mon allele may be in LD with a disease-causing muta-
tion. Of the 29 identified associations between SNP
alleles and disease, 17 (59%) were between the most
common allele and susceptibility to the disease. To assess
the significance of the tendency of the TDT to identify
the most common allele as associated with susceptibility
to disease, rather than protection from disease, we com-
pared these results to those of case-control analyses. Of
92 significant case-control associations involving micro-
satellite alleles, 37 implicated the most common allele
as conferring either protection or risk. Of these, 12
(32%) found the most common allele to be enriched in
cases relative to controls (a risk allele). Of 182 case-
control studies involving SNPs, 57 (31%) found the
common allele to be enriched in cases relative to con-
trols. The difference between the TDT and case-control
results, for both microsatellites and SNPs, is highly sig-
nificant ( , Fisher’s exact test). These re-�6P p 3.6 # 10
sults are summarized in table 4 and figure 2.

Error Rate Estimation

In addition to the 31 identified distortions of the most
common allele at a microsatellite marker, we found 9
distortions of the most common allele at an HLA marker
or VNTR, for a total of 40 associations between disease
status and the most common allele at a multiallelic
marker. For 29 of these 40 associations, frequencies were
available or could be approximated for the remaining
alleles at the marker. Using our random error model, we
estimated the genotyping error rates that would be re-
quired to render these 29 results insignificant. We found
that genotyping error, as we have modeled it, could not
explain the significance of 10 of the 29 results. All 10
of these studies contained !200 trios. Of the results that
could be explained by a random genotyping error model,
four would require an allelewise error rate of 10% or
higher, eight would require 4%–8%, and the remaining
seven significant results could be explained by genotyp-
ing error rates of 3% or less. On average, an allelewise
genotyping error rate of 5.5% would create a noncen-
trality parameter large enough to bring the true P values
above .05. Error rate estimation was also performed on
the 17 associations between the most common SNP allele
and disease susceptibility. Genotyping error, as we have
modeled it here, could not account for four of the as-
sociations, and the remainder could be explained by an
average allelewise error rate of 3.2%. These results are
presented in table B (online only).

To understand the magnitude of error rates in practice,
we compiled a list of microsatellite genotyping error rate

estimates from the literature. The results are summarized
in table 5.

Discussion

The apparent overtransmission of common alleles ob-
served in the literature could have several explanations,
each accounting for a fraction of the total trend. First,
the associations could be real and the distorted allele
could be the disease-causing mutation, lending support
to the common disease-common allele hypothesis. From
a population genetics standpoint, however, this seems
unlikely, as there will be selection against any allele that
reduces reproductive fitness by even a small amount. To
have a disease-causing allele reach a frequency of a few
percent in the population would require that the allele
also confer some selective advantage. For a disease-caus-
ing allele to become the most common allele in a pop-
ulation would be highly unusual. For this to happen as
a rule, rather than as the exception, is unreasonable. If
the diseases in the collected studies were uniformly dis-
eases of late-onset, it might be easier to imagine that
historically there was less selective pressure against them.
However, the collected studies cover a wide range of
diseases, with 55% of them occurring primarily in child-
hood, making this scenario unlikely to explain many of
the compiled associations. Alternatively, the distorted
marker allele may be in LD with the disease-predisposing
allele. In this case, the probability that a mutation occurs
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Figure 2 Breakdown of compiled microsatellite association studies by study type (TDT or case-control), allele implicated (most common
or not), and nature of allele (risk or protective).

on any given allele may be proportional to the frequency
of that allele, resulting in association between the fre-
quency of an allele and over- or undertransmitted status.
Finally, genotyping error rates may be substantial
enough to be significantly contributing to the false-pos-
itive rate of the TDT and, consequently, strengthening
the association between allele frequency and over- or
undertransmission. Table 4 and figures 1 and 2 can help
distinguish between the latter two possibilities.

As figure 1 shows, the frequency distribution of ov-
ertransmitted microsatellite alleles among controls in
TDT studies is significantly different than the frequency
distribution of all microsatellite alleles in the Marshfield
Clinic Human Diversity Panel ( ). If the�11P ! 1.0 # 10
tendency of the most common microsatellite allele to
appear associated with increased risk of disease were
due entirely to LD between the marker allele and the
disease-predisposing allele, we might expect the two fre-
quency distributions in figure 1 to be more similar. The
marked difference between the two distributions implies
that the TDT finds common alleles to be dispropor-
tionately overtransmitted.

We also found significant differences between the

TDT and case-control studies, as depicted in table 4 and
figure 2. Presumably, there is no difference in biology
between associations that could be detected using the
TDT and those that could be detected using case-control
methods. The processes of mutation, recombination,
natural selection, and genetic drift that influence pat-
terns of LD should affect the TDT and case-control
methods equally. Thus, the expectation is that the ratio
of over- to undertransmission of the most common allele
at a marker would be similar for both tests. However,
as table 4 shows, this is not what is observed. Given
that the most common allele at a microsatellite marker
has been associated with disease status, the TDT finds
it to be a risk factor 87% of the time, whereas case-
control finds it to be a risk factor 32% of the time. The
trend for SNPs is similar, with the most common allele
being implicated as a risk factor 59% of the time with
the TDT and 31% of the time with case-control. The
difference between the TDT and case-control results is
highly significant ( , Fisher’s exact test).�6P p 3.6 # 10
It is not clear what effect differences in power to detect
rare versus common alleles may have in a comparison
between TDT and case-control results; further explo-
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Table 5

Estimates of Microsatellite Genotyping Error Rates

Reference and Error
Ratea Notes

Brzustowicz et al. 1993:
3.2% Global average error rate in CEPH database
5.9% Global average error rate in CEPH among “non-obvious equivalents” (i.e., blind duplicates)
.7%–6.8% Range in per-marker error rates in CEPH database at four markers examined on chromosome 5

Smith et al. 1995:
1%–3% Includes only errors due to nontemplated nucleotide addition by Taq DNA polymerase

Hall et al. 1996:
.55% 35 discrepancies in duplicate genotyping of 12 markers in 268 individuals

Weeks et al. 2002:
.65%–6.8% Comparison between MGS and CIDR genotypes; range is due to differing treatments of non

one-to-one mappings of allele sizes between centers
0%–63% MGS-CIDR discordance rate per marker that could not be resolved by linear transformation of

allele sizes from one center to the other. Actual values were: 0%, 205 markers; 3.3%, 28
markers; 3.3%–17%, 42 markers; and 50%–63%, 3 markers

Ghosh et al. 1997:
2.6% Discordance rate in allele calling between two technicians reading the same gel

Idury et al. 1997:
1.9% Mendelian-detectable error rate in nuclear families

Mansfield et al. 1994:
1.5% Mendelian-detectable error rate in nuclear families

Sobel et al. 2002:
4%–13% Average error rates per chromosome for alleles called with automated Genotyper software.

Note that very high error rate on one chromosome was due to a single marker with initial
error rate of 29%; after removal of this problem, marker error rate was 4%–5%.

0%–8% Average error rates per chromosome for alleles called manually. After removal of problem
marker: 0%–2%.

0%–7% Average error rates per chromosome for data cleaned by quality-control procedures described in
reference. After removal of problem marker: 0%.

a Error rates are per genotype unless otherwise specified. Note that the error rates used in the text and in tables 1–3 are
per allele.

ration of this issue is warranted. However, as figure 2
shows, there appears to be no difference in ascertain-
ment rate of the most common allele, as 39% and 40%
of significant microsatellite TDT and case-control re-
sults, respectively, involve the most common allele. We
believe that the tendency of the TDT to identify the
most common allele as a risk factor is a direct effect of
the presence of undetected genotyping errors.

We used our random error model to estimate the mag-
nitude of genotyping error that could account for the
apparent overtransmission of common microsatellite al-
leles found in the literature. We found that approxi-
mately one-third of the results could not be due to ran-
dom undetected genotyping error as we have modeled
it (table B). Another third would require error rates in
the range of 5%–10% per allele, or 10%–20% per ge-
notype. The final third would require 0.3%–3% error
per allele, or 0.6%–6% per genotype.

To assess whether these error rates are realistic, we
returned to the literature, compiling all available anal-
yses of microsatellite genotyping error rates. As table 5
shows, estimates in global mean error rates range from
0.55% (Hall et al. 1996) to 5.9% (Brzustowicz et al.

1993) per genotype. However, because the TDT is com-
puted on a per-marker basis, one must consider both
the mean error rate across all markers and the variance
in error rates between markers when estimating true
error rates. Several of the studies listed in table 5 address
this issue. Brzustowicz et al. (1993) examined four
markers on chromosome 5 and found per-marker error
rates of 0.7%, 2.7%, 3.4%, and 6.8%. If only the mean
error rate across these markers (3.0%) were reported,
the high error rate at the last marker would not be
evident. Weeks et al. (2002) compared genotype data
generated by two high-throughput genotyping centers,
the Center for Inherited Disease Research (CIDR) (Na-
tional Human Genome Research Institute, National In-
stitutes of Health, Bethesda, MD) and the Mammalian
Genotyping Service (MGS) (Marshfield Clinic, Marsh-
field, WI). A total of 321 markers were typed by both
centers in 30 samples. Of the 321 markers, 276 showed
approximately one-to-one correspondence in allele size
between centers (0% discordance). Among the remain-
ing 45 markers, there were 116 discordant pairs of al-
leles. Interestingly, the discordancies were not distrib-
uted evenly across the 45 markers; 50 of the 116
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discordancies occurred at 3 markers, resulting in per-
marker discordance rates 150% at these markers. Four-
teen markers showed discordance rates of 3.3%–17%,
and 28 markers showed discordance rates of 3.3% for
a global mean discordance rate of 1.3%. Again, the
global mean does not reflect the high variance between
markers. Finally, in an analysis of 50 markers on three
chromosomes, Sobel et al. (2002) observed a large var-
iance in per-marker error rates. A global mean error
rate of 5.6% included one marker with a 29% error
rate.

It is evident that genotyping error rates are not uni-
form across markers; some markers show error rates
that are many times higher than those shown by others.
The erratic behavior of a subset of markers could be a
problem particularly when genotyping is performed by
an individual laboratory, rather than a high-throughput
center, as the markers included in high-throughput pan-
els have been studied extensively. They have specifically
been selected for inclusion because they produce highly
replicable genotypes, and their individual PCR reactions
have been optimized (CIDR, MGS). In addition, large-
scale genotyping centers are highly practiced, calling
millions of genotypes per year. These centers report
global mean error rates on the order of 0.5% per ge-
notype for blind duplicates run on the same gel. Since
few of the studies included in our analyses outsourced
their genotyping to such centers, it is not difficult to
imagine that they would have mean error rates that are
several times higher than those of the large centers, par-
ticularly when gel-to-gel and technician-to-technician
variation are included in the error rate calculation.
More importantly, there is no reason to expect that the
studies included in our analyses would have variances
in error rates between markers that would be any
smaller than those listed in table 5. Therefore, we believe
that in practice genotyping error rates are sufficiently
high to bias the TDT, inflating the false-positive rate
and causing common alleles to appear to be
overtransmitted.

We recommend several strategies for coping with the
TDT’s inflated false-positive rate associated with un-
detected genotyping error. First, an association between
a common allele and disease susceptibility or a rare
allele and protection, identified thorough the TDT,
should be treated with caution. More confidence can be
placed in an association in the opposite direction than
the predicted bias. For an association in the predicted
direction, confidence can be increased by repeat geno-
typing, analysis of nearby markers, use of a haplotype
rather than an individual marker, or use of a functional
assay in the case of a SNP. Second, we recommend re-
genotyping all individuals at any marker showing sig-
nificant transmission distortion. For SNPs, the regen-
otyping should be carried out using a different

technology than was originally employed. If the same
genotypes are obtained through both methods, one can
be more confident in the association. Third, a likeli-
hood-based TDT method that is robust to undetected
genotyping errors (Gordon et al. 2001) should be used
in conjunction with the standard TDT. Fourth, a more
stringent cutoff for significance could be employed, on
the basis of the frequency of the allele under study and
the sample size. Fifth, investigators should explore the
variance in genotyping error rates across the markers
in their own data sets. This is particularly important if
many markers are considered, as the error rate at an
individual marker will have a much smaller effect on
the mean error rate in a large pool of markers than in
a small one. Every effort should be made to ensure that
the error rate is under 0.5% at each marker and to
identify markers with higher error rates. If a significant
association is identified through any type of analysis at
a marker with a higher error rate, it should raise
suspicion.

Our analyses underscore the need to continue to im-
prove data quality through the pursuit of increasingly
accurate genotyping technology. Highly accurate ge-
notype data will become increasingly critical as human
geneticists attempt genomewide association studies us-
ing thousands of SNPs in an effort to identify genes of
increasingly smaller effect in the etiology of complex
traits.
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